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Abstract: Phytoplankton are marine microorganisms that play a key role in the production of oxygen and serve as the 

foundation of the marine food chain. Over the past century, the population of phytoplankton has declined significantly with 

the onset of climate change. Although phytoplankton have the capacity to adapt to rising ocean temperatures, rapid 

environmental changes, including increased top-down control and thermal stratification, reduce populations before 

adaptations are incorporated into the genome. To enhance survival rates, thermotolerance in common algal strains can be 

enhanced through increased expression of the conserved Heat Shock Protein 90 (HSP90). Trials will be conducted on the 

common algal species, Tetraselmis suecica (T. suecica), for its considerable size, photosynthetic rate, and nutrient-rich 

properties. Thermotolerance will be augmented by splicing the HSP90 gene into the T. suecica metallothionein (Mt) promoter 

using CRISPR-Cas9. A period of incubation in a copper sulphate solution ensures Mt promoter stimulation, thereby 

increasing HSP90 expression. The efficacy of the proposed methods will be measured by comparing HSP90 protein 

production between transgenic and wild-type T. suecica cultures. The genomic incorporation of the modified HSP90 gene 

enables future populations to exhibit thermotolerance in the presence of heavy metals in the ocean beyond its basal level of 

expression. By accelerating the adaptation of thermotolerance, the overall fitness of T. suecica can be increased to  

re-establish its population under warmer oceanic conditions. By applying similar methods to other phytoplankton, the 

repopulation of various species can increase biodiversity and global net primary productivity. 
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Introduction 

Phytoplankton produce 70% of the world’s oxygen, 

despite accounting for 1% of global photosynthetic biomass 

[1-3]. As a food source for numerous aquatic species, this 

producer serves a foundational role in the marine food web 

[4]. Although phytoplankton are capable of mitigating the 

effects of climate change by fixing between 30 to 50 billion 

metric tons of carbon each year, climate change has 

increased oceanic temperatures beyond the typical living 

conditions of phytoplankton [1,5]. This has resulted in a 

40% population decline since 1950 [6-7]. In response to 

climate change, species are able to modify their 

reproductive habits and geographical dispersion. Thus, 

phytoplankton can withstand incremental increases in 

temperature [8]. However, it is predicted that organisms 

would not be able to adapt rapidly enough to resist the 

effects of climate change, notably elevated levels of top-

down control and thermal stratification [8]. Besides rising 

oceanic temperatures, increased top-down control further 

amplifies the predation of primary producers, resulting in 

the decreased accumulation of biomass. This effect may 

significantly decreasing the phytoplankton population, 

preventing the inheritance of genetic mutations that allow 

for thermal resistance [9]. These marine organisms must 

also overcome the environmental challenge of thermal 

stratification, which involves the division of lakes into 

horizontal layers based on their temperature. Increased 

thermal stratification has been linked to a decrease in 

phytoplankton population [8,10]. 

Within 80 years, the average global ocean surface 

temperature is estimated to increase by 4°C [11-13]. Certain 

species of phytoplankton, such as Desmodesmus armatus, 

are capable of tolerating warmer water temperatures due to 

an intrinsically high expression of the Heat Shock Protein 

90 (HSP90) gene [14]. Under stressful conditions, such as 

increases in temperature, HSP90 chaperone proteins are 

produced to assist in protein folding [15-17]. This prevents 

the thermal denaturation of proteins to maintain 

homeostasis, which improves the thermotolerance of the 

organism [15-16]. Other common species, notably 

Tetraselmis suecica, optimally function in temperatures of 

approximately 18.0°C [18-20]. This phytoplankton will need 
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to adapt to the onset of warmer conditions in the upcoming 

decades by becoming more thermotolerant [21]. Since the 

HSP90 gene is naturally expressed in T. suecica, the 

adaptation of heat tolerance can be accelerated by 

genetically modifying this species to increase HSP90 

expression [21-22]. With potential mutation rates between 

1.1 to 2.5%, CRISPR-Cas9 is an efficient and cost-effective 

gene-editing tool, which has been used multiple times to 

edit algal genes in the past [4,23-25]. CRISPR-Cas9 has 

two major components that allow it to splice genes: single 

guide RNA (sgRNA), which directs the Cas-9 enzyme to the 

correct location on the genome and the Cas-9 enzyme, which 

splices the gene to allow foreign DNA to be inserted [23]. 

 

Methods 

To enhance the thermotolerance of T. suecica, 

CRISPR-Cas9 will be used to cut the HSP90 gene and 

place it next to the Mt promoter [26]. The HSP90 gene is a 

part of a plasmid, called HSP90 HA, which will be 

purchased from a commercial vendor. Under normal 

conditions, the Mt promoter transcribes the conserved 

metallothionein 1A (Mt1A) gene [27-28]. However, 

CRISPR-Cas9 will be used to replace the Mt1A gene with 

the HSP90 HA plasmid, thereby activating the Mt promoter 

to produce HSP90 [29]. 

Due to the toxicity of Cas9 to microalgae, Cas9 

ribonucleoproteins (RNPs) will be used to prevent cell 

death, as they eventually degrade within the cell [30-31]. 

As this complex is comprised of the Cas9 protein and 

sgRNA without a vector, gradual degradation is enabled 

[32]. A Cas-9 RNP is created through the incubation of the 

Cas-9 protein with sgRNA. The sgRNA that targets the 

Mt1A gene and the Cas9 protein will be purchased from 

manufacturers, such as ToolGen, Inc [32]. The Cas-9 RNPs 

will be created through the incubation of 10 μg of sgRNA 

and 7.5 μg of Cas9 protein at 37°C for 30 minutes [32]. 

To ensure the successful incorporation of the HSP90 

gene into microalgal DNA, a traceable marker will be 

inserted. By splicing HSP90 into a plasmid that codes for 

antibiotic resistance, the insertion of this plasmid can be 

tested by treating the host with antibiotics [33]. This is 

accomplished with a plasmid that contains the code for 

zeocin antibiotic resistance, pMOD-zeo, which will be ligated 

to the HSP90 HA plasmid using the restriction endonucleases 

NcoI-Styl and BseRI [34-35]. Using polymerase chain 

reaction (PCR) at 96°C, this mutant plasmid will be 

linearized to create free ends that can bind to T. suecica 

DNA. 

The T. suecica cells will be placed in 6-well plates and 

250 V will be applied for electroporation [31]. This technique 

will increase the permeability of cell membranes by placing 

cells in an electric field [36]. The cells will be transfected 

with 2.0 µg Cas-9 RNP and 0.4 µg of the linear HSP90 HA 

plasmid [37]. 

These cells will then be moved onto agar plates where 

they will be incubated in 100 μg/ml of zeocin solution for 

16 hours [38]. The surviving cells will contain the pMOD-

zeo gene and thus the HSP90 gene. These transgenic cells 

will be referred to as Mt90 cells, as they contain the HSP90 

gene under the control of the Mt promoter. Mt90 cells 

express the HSP90 gene when initiated by the Mt promoter.  

To test the increased thermotolerance of the transgenic 

phytoplankton, 50 μL samples of the modified cells and 

wild-type cells will be distributed to 96-well microplates as 

the experimental and control groups [39]. These wells will 

be incubated with a 200 μM solution of copper sulphate for 

two hours, followed by a heat-shock of 36°C to allow for 

the distribution of HSP90 [40].  

Thermogravimetric analysis (TGA) will test the effects 

of genetic modification on thermotolerance by measuring 

sample mass difference over a temperature range of 25°C to 

45°C. As increasing mass loss corresponds to population 

reduction, temperatures with minimal mass loss indicate the 

optimal temperature range for Mt90 T. suecica strains [41]. 

 

Results 

The insertion of the metallothionein-controlled HSP90 

gene into T. suecica cells is expected to increase HSP90 

protein production to induce an increase of thermotolerance 

up to 4°C. As one of the most photosynthetically productive 

organisms, phytoplankton play a vital role in greenhouse gas 

uptake and oxygen production [42]. Hence, phytoplankton 

populations must be maintained at an appropriate size for the 

long-term amelioration of climate change [43]. 

 

Discussion 

In a lab setting, experimenters have exquisite control 

over phytoplankton development with minimal ethical and 

financial challenges [44]. As a result, laboratory testing will 

be both feasible and accessible for researchers. 

T. suecica was chosen as a model organism for its 

nutritional content, photosynthetic, and reproduction rates 

[45]. As most organisms possess the conserved HSP90 

gene, similar results may also be recreated in other 

phytoplankton species.  

The thermotolerance of T. suecica will be increased by 

inserting the HSP90 gene in the place of the Mt1A gene to 

be inducible by the Mt promoter [40]. This technique will 

initiate gene expression in the presence of heavy metals. 

CRISPR-Cas9 genetic modification techniques will be used 

to splice the HSP90 and Mt1A genes together, as this 

process is able to target specific eukaryotic DNA sequences 

with a low error rate [40]. 

Although no studies to date have performed CRISPR-

Cas9 gene editing on T. suecica, researchers have used this 

technology on similar microalgae, including Phaeodactylum 

tricornutum [46]. Researchers were able to locate target genes 

using guide RNAs and insert foreign DNA using the Cas9 

complex. As well, the investigators successfully tested for the 

uptake of the inserted genes, demonstrating that this genetic 

editing technique can be employed in microalgae [46]. 

Subsequently, genetic editing in T. Suecica is expected to 
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have similar results to the aforementioned studies, allowing 

for the increased expression of HSP90 in this species. 

Copper is an effective inducer of the Mt gene with high 

levels of soft-tissue uptake. Therefore, this metal will be 

used to initiate Mt90 gene expression [47]. However, other 

heavy metals, including arsenic, cadmium, and lead are also 

able to induce the expression of Mt90 [48]. 

Research has shown that the aquatic copper 

concentration required to induce the expression of the Mt 

gene is 5.00 μg/L and several studies have measured 

concentrations above this level in the Pacific Ocean [49-51]. 

Thus, the recombinant Mt90 will be expressed in transgenic 

T. suecica in their natural habitat. 

The conducted trials may potentially induce 

thermotolerance by genetically incorporating the modified 

DNA in future T. suecica populations. However, the 

proliferation of modified phytoplankton must be measured 

in a laboratory setting prior to their introduction in 

ecosystems. For these trials, algal species will be incubated 

through photobioreactors to grow sample colonies [49]. As 

well, statistical analyses should be performed to estimate 

the effects of introducing this modified strain to oceanic 

environments [52]. After comprehensive studies and 

appropriate alterations, closed-system segments within 

smaller bodies of water must be designated to simulate the 

performance of modified T. suecica in marine environments 

[52-53]. Each trial must be performed with caution to 

minimize biological consequences in ecosystems, such as 

competition with native species [49]. Depending on the 

stage of testing, adverse effects resulting from the 

introduction of the modified T. suecica strain must be 

alleviated through the consideration of additional variables 

[52]. With the introduction of thermotolerance into the gene 

pool, algae reproductivity can gradually be re-established to 

increase oceanic photosynthetic rates. 

 

Conclusion 

The proposed study will determine the thermotolerant 

capability of genetically modified T. suecica. Additional lab 

testing will be required to observe the impact of these 

genetically modified phytoplankton on the marine biosphere. 

With the development of thermoresistant phytoplankton, this 

study has the potential to initiate a feasible and effective 

solution to mitigate the consequences of climate change. 
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