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Abstract 

Introduction: Arthritis is one of the most common chronic diseases. Early detection of arthritis and its progression can 

facilitate early intervention measures, lowering disease severity in patients. As electronic health records (EHR) become 

more accessible, this study assesses whether general health information and arthritis-related questionnaires can be used in 

arthritis diagnosis, without the involvement of costly imaging methods. Therefore, we created deep learning (DL) and 

machine learning (ML) models to explore the feasibility of combining EHR and modern computational tools to diagnose 

arthritis. 

Methods: A total of 782 arthritis patients and 4014 control patients were identified from the Osteoarthritis Initiative (OAI) 

– a ten-year-long observational study that included patient EHR in five time points. Six hundred variables were filtered by 

random forest classifier followed by manual filtering. Data were split properly to training, testing and validation set, and the 

training set was balanced. Sequential, nonsequential DL models, and five independent DL models for each time points were 

used. The accuracy, positive prevalence value (PPV), negative prevalence value (NPV), and area under curve (AUC), were 

assessed and compared with four classical ML models. SHAP (SHapley Additive exPlanations) summary analysis was also 

conducted. 

Results: Sequential and non-sequential deep learning models showed accuracies of ~ 0.97, and the four classical machine 

learning approaches showed accuracies of above 0.9. High positive and negative predicted values (> 0.90) for all of the 

models suggested the potential clinical applicability of the model, while the SHAP analysis demonstrated its interpretability. 

Discussion: We tested various models and showed the ability to use machine learning methods for early diagnosis of arthritis 

with EHR. The models can be used as a screening tool to select susceptible patients for confirmatory tests such as X-ray and 

MRI. Identification of early disease states could facilitate protective measures that slow disease progression. 
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Introduction 

Arthritis is a condition caused by joint inflammation; 

it is the most prevalent chronic disease worldwide. There 

are over 100 types of arthritis, each capable of diminishing 

the quality of life of the affected population, with 

symptoms ranging from chronic joint pain to severe 

disability [1]. Arthritis is estimated to affect approximately 

20% of Canadians [2], and the estimated risk for arthritis 

ranges as high as 47% in individuals older than 65 [3]. 

This prevalence is predicted to rise higher [4]. Currently, 

there are no satisfactory drugs that can stop arthritis 

progression or provide long-lasting symptomatic relief. 

The most effective therapy to improve quality of life is 

joint replacement, but they are typically expensive and 

harmful to perform in can be unsuccessful in elder patients 

[5]. One potential reason for the failure of interventions is 

that it may be too late to give the treatments to patients 

when the arthritis is already symptomatic. In fact, 

underdiagnosis of arthritis is significant. The pathological 

processes of different types of arthritis can start years 

before the onset of clinical symptoms, leaving a wide time 

window for early prediction and identification of risk 

factors [6]. However, asymptomatic and lightly 

symptomatic patients can go unnoticed until the late stages 

of progression, when major structural and functional 

alterations have occurred. Increasing evidence suggests 

that early recognition of arthritis is critical. Firstly, 

lifestyle adaptation and preventative treatments could slow 

symptom progression. Furthermore, researchers could 

better characterize biomarkers associated with early stages 

of the disease [7]. 

Many databases have been established to investigate the 

onset and progression of arthritis, including The National 

Data Bank for Rheumatic Diseases, the Osteoarthritis 

Initiative (OAI), and American Rheumatism Association 

Medical Information System [8–10]. They provide essential 
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platforms for investigating different biomarkers and the 

pathophysiology of different types of arthritis. As 

computational methods evolve, research has suggested a 

potentially promising role for AI systems in the diagnosis of 

arthritis. Several studies have used machine learning models 

for risk prediction and pain assessment for osteoarthritis and 

rheumatoid arthritis, involving both statistical and machine 

learning (ML) approaches [9, 11]. 

With the continuous improvement of data collection, 

large collections of longitudinal electronic health records 

(EHR) are becoming available for clinical research. 

Numerous Many risk factors of arthritis identified by 

previous studies (e.g., obesity, joint injuries, age) can be 

routinely captured in patients’ EHRs [12]. By using EHR as 

a diagnostic tool, it can facilitate the early detection of 

arthritis onset, without the involvement of complicated, and 

costly tests. Many ML methods are commonly applied to 

clinical data, such as random forests, K-nearest neighbour, 

and support vector machine [11]. However, these methods 

are often not suited to EHR data due to the high number of 

variables and the presence of missing data [13]. Deep 

learning (DL) is a subtype of ML that has gained popularity 

in different health domains due to its ability to process 

complex data. With underlying algorithms that mimic 

human thinking processes, it enables computers to learn and 

evolve in an astonishing fashion [14]. Therefore, this study 

comprehensively explored the feasibility of DL models, 

compared to ML models, by using large collections of real-

world EHR data from The Osteoarthritis Initiative 

databases - a multicenter, ten-year observational study of 

men and women, sponsored by the National Institutes of 

Health. Successes in the models could support early 

diagnosis of arthritis with EHR. The potential usage of AI 

in clinical settings involves acting as a screening tool to 

select susceptible patients for confirmatory tests. 

Identification of early disease states could facilitate 

protective measures that reduce disease morbidity. 

 

Methods 

Data Description 

The OAI longitudinal dataset consists of 5 time points 

collected over a span of 8 years, involving 4796 

participants [15]. 

 

Data Processing 

Feature Selection 

In the initial step of feature selection, we used random 

forest classifier to extract the important variables, and then 

manually eliminated irrelevant variables from the dataset [16, 

17]. The variables were scrutinized based on their domain 

relevance to arthritis as well as previous literature indicating 

their significance or lack thereof. This process reduced the 

dimensionality of the dataset and helped in focusing on the 

most pertinent features for disease prediction. 

Our dataset, initially in a 3D array format (patients, 

time steps, features), was reshaped into a 2D format, 

aligning each patient-time step combination with a 

corresponding feature. The patient’s ID column was 

dropped before training to avoid bias. 

 

Data Imputation & Normalization 

Features were classified into categorical and numerical 

types. Numerical features underwent median imputation 

and standardization, while categorical features were 

imputed with the most frequent category. This approach 

was facilitated by Scikit-learn's Pipeline and 

ColumnTransformer functionalities. 

 

Data Sampling 

The data was randomly split for training (80%) and 

testing (20%). In some experiments, 10% or 20% of the 

training data is split out for validation during training. The 

outcome of OA disease diagnosis (Y/N) served as the 

dependent variable and was used as ground truth. 

Oversampling was applied using SMOTE (Synthetic 

Minority Over-sampling Technique), to address class 

imbalance by augmenting the minority class [18]. It operates 

by creating synthetic samples rather than replicating existing 

ones. For a given minority class sample (in this case, the 

diseased participants), SMOTE selects one or several of its 

nearest neighbors from the same class, then synthesizes a new 

sample that is a linear interpolation between the chosen 

sample and its neighbors. This process involves randomly 

choosing a point along the line segment connecting the 

sample under consideration with its selected neighbor(s). 

 

Model Training 

Robust Neural Network Models: Non-sequential Analysis 

Data across 2009-2016 was reshuffled to produce non-

sequential data. The model's performance is contingent on 

several hyperparameters, which were carefully chosen.  

1) Number of Neurons: The hidden layer comprised 64 

neurons, providing the model with sufficient 

complexity to capture patterns in the data without 

being overly prone to overfitting.  

2) Activation Functions: The ReLU activation function 

was used in the hidden layer.  

3) Dropout Rate: Set at 0.5. 

4) Loss Function and Optimizer: The model employed 

binary cross-entropy as the loss function, apt for 

binary classification tasks, and used the Adam 

optimizer. 

5) Training Parameters: The model was trained over 

50 epochs with a batch size of 32. These parameters 

were selected to ensure sufficient training for 

convergence while maintaining computational 

efficiency.  

6) A validation split of 20% was used during training, 

allowing for the monitoring of model performance 

on unseen data and aiding in the prevention of 

overfitting. 

7) Undersampling was applied to the training data. 
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Longitudinal Analysis Using Traditional Neural Networks 

Neural network model was trained by data from the first 4 

time points and was tested by data at the end of 2016. The 

model used was a simple feedforward neural network with one 

hidden layer of 64 neurons, a dropout layer for regularization, 

and an output layer with sigmoid activation. The model was 

compiled with binary cross-entropy loss and trained over 50 

epochs with a batch size of 32. Details of model parameters are 

the same as the robust neural network model (method 2.4.1). 

Undersampling was applied to the training data set. 

 

Individual Deep Learning Model for Data at Single Time 

Points 

Individual deep learning models were developed for 

data at each specific time point, focusing on a detailed 

analysis of the data's temporal characteristics. The model 

applied a batch size of 32 and 50 epochs. 

 

Traditional Machine Learning Methods 

We used other mainstream machine learning models 

including Random Forest [19], XGBoost (XGB) [20], 

Support Vector Machine (SVM) [21], and K-Nearest 

Neighbors [22] to fit the dataset collected in 2009 and 

tested their performance on testing data. The train-test split 

strategy aligns with the practices above (80% vs 20%) 

 

Model Evaluation Methods 

To rigorously assess the performance of the trained 

models, several evaluation metrics were employed. 

 

Accuracy (PPV, NPV, Accuracy, Sensitivity and Specificity) 

Accuracy was the fraction of correct predictions 

made by the model. It was measured by dividing the 

number of correct predictions by the total number of 

predictions. It serves as a straightforward evaluation 

metric, especially when the class distribution is balanced. 

PPV, NPV, sensitivity and specificity of models were 

also assessed. 

 

Confusion Matrices 

In our study, the confusion matrix was utilized as a 

critical tool for evaluating the performance of a 

classification model in differentiating between arthritis and 

non-arthritis populations. This matrix presents a detailed 

breakdown of the model's predictions, categorized into four 

key segments: True Positives (TP), where the model 

correctly identifies individuals with arthritis; True 

Negatives (TN), where it correctly recognizes non-arthritis 

individuals; False Positives (FP), cases where non-arthritis 

individuals are mistakenly classified as having arthritis; and 

False Negatives (FN), where individuals with arthritis are 

incorrectly classified as non-arthritic. 

 

ROC and AUC 

The Receiver Operating Characteristic (ROC) curve 

plots the true positive rate against the false positive rate at 

various decision thresholds [23]. The Area Under the Curve 

(AUC) summarizes the ROC curve into a single value, 

indicating the model's ability to distinguish between the 

classes. A higher AUC indicates better model performance. 

 

SHAP (SHapley Additive exPlanations) 

At the end, we attempted to apply SHAP, is a 

significant advancement in machine learning 

interpretability, leveraging Shapley values from cooperative 

game theory to elucidate our model outputs [24]. It 

systematically quantified the contribution of each feature to 

a model's prediction, enabling precise interpretation even in 

complex models such as deep neural networks or ensemble 

methods. This granular, feature-level insight afforded by 

SHAP is indispensable for validating the internal mechanics 

of models, ensuring transparent, fair decision-making. We 

could use it to explore the importance of each variable in 

our data analysis model. 
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Results 

Traditional Neural Networks 

Non-Sequential Analysis 

 

 
Figure 1. Performance of Traditional Neural Network Model Employing Non-Sequential Analysis. A. Confusion matrix 

visualizes the performance of the classification model. The matrix compares the actual vs. predicted labels, showcasing the 

number of true positives (top left), true negatives (bottom right), false positives (top right), and false negatives (bottom left). 

B. ROC graph represents the diagnostic ability of the binary classifier. The curve plots the true positive rate (TPR) against the 

false positive rate (FPR) at various threshold settings. All subfigures are made with Python (https://www.python.org/). 

 

The neural network model in Figure 1 had a positive 

predictive value (PPV) of 0.99, a negative predictive value 

(NPV) of 0.95, a sensitivity of 0.73, and a specificity of 

0.95. Area under curve was 0.92. 

 

Sequential Analysis 

 

 
Figure 2. Performance of Traditional Neural Network Model Employing Sequential Analysis. A. Confusion matrix 

visualizes the performance of the classification model. The matrix compares the actual vs. predicted labels, showcasing the 

number of true positives (top left), true negatives (bottom right), false positives (top right), and false negatives (bottom left). 

B. ROC graph represents the diagnostic ability of the binary classifier. The curve plots the true positive rate (TPR) against the 

false positive rate (FPR) at various threshold settings. All subfigures are made with Python (https://www.python.org/). 

 

The neural network model in Figure 2 has a positive 

predictive value (PPV) of 0.96, a negative predictive value 

(NPV) of 0.97, a sensitivity of 0.85, and a specificity of 

0.97. 
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Individual Time Points Analysis 

 

 
Figure 3. Confusion Matrices for Individual Neural Network Models. This graph demonstrates the effect of learning through 

epochs. A. Confusion matrix of the neural network model performance on the data of 2009. B. Confusion matrix of the neural 

network model performance on the 2010 data. C. Confusion matrix of the neural network model performance on the 2013 

data. D. Confusion matrix of the neural network model performance on the 2016 (March 15th) data. E. Confusion matrix of 

the neural network model performance on the 2016 (November 30th) data. All subfigures are made with Python 

(https://www.python.org/). 

 

 
Figure 4. Receiver Operating Characteristic (ROC) Curves for Individual Neural Network Models. This figure presents a 

series of five ROC curves labeled from A to E (5 time points). Each panel displays the trade-off between the true positive rate 

(TPR) and false positive rate (FPR) for a binary classifier at various threshold settings. The ROC curves are plotted with the 

TPR on the y-axis against the FPR on the x-axis. The diagonal dashed line represents the line of no-discrimination, indicating 

a classifier with no better accuracy than random chance. The area under each ROC curve (AUC) is provided. All subfigures 

are made with Python (https://www.python.org/). 
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Table 1. Performance of Individual Deep Learning Model Trained on Data at Each Time Point  

Time Point Accuracy (PPV) Accuracy (NPV) Accuracy Sensitivity Specificity 

May 8th 2009 0.96 0.97 0.97 0.83 0.96 

February 26th 2010 0.98 0.98 0.98 0.89 0.98 

December 11th 2013 0.94 0.97 0.96 0.86 0.97 

March 15th 2016 0.93 0.97 0.95 0.85 0.97 

November 30th 2016 0.96 0.97 0.97 0.86 0.97 

 

All 5 models had accuracies of above 0.95 (Figure 3; 

Table 1). Area under curve is over 0.9 for all 5 individual 

neural network models (Figure 4). The models developed in 

this study exhibited a consistent pattern of lower sensitivity 

of around 80% coupled with higher specificity, this is 

especially observed in the individual time analysis (Table 

1). 

 

Robust Analysis Using Common Machine Learning Model 

Table 2. Performance of Mainstream Machine Learning Model 

Model Accuracy Sensitivity Specificity 

Random Forest 0.97 0.82 0.96 

XGBoost 0.97 0.82 0.96 

K-Nearest Neighbors (k = 300) 0.92 0.75 0.95 

Support Vector Machine 0.95 0.73 0.95 

Notes: Here, we used the data for 2009. Accuracy indicates the percentage of correct predictions made by the model. All the 

models are built in Python (https://www.python.org/). 

 

As described in Table 2, accuracies of traditional 

machine learning models were all above 0.91 (0.92 to 0.97), 

with a sensitivity ranking ranging from 0.73 to 0.82, and 

specificity ranging from 0.95 to 0.96. 

 

SHAP Analysis 

 

Figure 5. SHAP value graphs for the Top 3 Variables of DL and ML Models. A. SHAP value graph for the top 3 important 

variables in the neural network model trained by the data of November 2016. B. SHAP value graph for the top 3 important 

variables in the random forest model trained by the data of 2009. All subfigures are made with Python 

(https://www.python.org/). 
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Figure 6. SHAP value graph for other important variables in DL and ML models. Eleven variables exist in both graphs. A. 

SHAP value graph for the other important variables in the neural network model trained by the data of November 2016. B. 

SHAP value graph for the other important variables in the random forest model trained by the data of 2009. All subfigures 

are made with Python (https://www.python.org/). 

 

The color of the points indicates the SHAP value of the 

feature, with blue representing lower or less and pink 

representing higher or more. For example, a higher value of 

"Time to complete 20m walk" (pink points) tends to increase 

the model's chance of making arthritis prediction, while a 

lower value (blue points) tends to decrease it. Metrics from 

20m walk examinations, systolic blood pressure and 

intensities of activities were shown to have particular 

importance in model decisions (Figure 5, Figure 6). 

 

Discussion 

In this study, we evaluated the feasibility of using deep 

learning models to identify arthritis patients from the OAI 

database and compare their effectiveness with classic ML 

models such as Random Forest, XGBoost, K-Nearest 

Neighbors, and Support Vector Machine. The neural network 

model employed in this study represented deep learning 

models widely recognized for their efficacy in pattern 

recognition and predictive analysis [19]. Neural networks 

consist of layers of interconnected nodes or neurons, where 

each connection represents a weight that is adjusted during the 

learning process [25]. In binary classification tasks, such as 

predicting the onset of arthritis from clinical data, neural 

networks learn to map input features to a binary outcome 

through a series of non-linear transformations. 

During the training of neural networks, we approached 

the data in non-sequential (Figure 1), sequential ways 

(Figure 2), and by separating models for each individual 

timepoints (Figure 3). The non-sequential analysis was 

performed after randomly assorting data from different 

years, this is an approach that discards longitudinal patterns, 

allowing the model to predict only based on individual time 

points. On the other hand, sequential analysis used the first 

four time points for training and the last for testing. The 

model treated data from different time points as independent 

observations, aiming to capture a generalized pattern of 

arthritis onset from various stages of patient data. The study 

provided a logical separation, ensuring that the model was 

tested on unseen data from a different time point, which 

could be indicative of its generalizability. Lastly, we also 

generated neural network models by using data from each 

individual time point. Even though the sample size is much 

smaller than the other two methods, this prevents repetitive 

information from the same patient. The sequential analysis 

we conducted suggests that creating a model capable of 

predicting the onset of osteoarthritis years in advance is 

feasible, as our model demonstrated comparable 

performance to other robust neural network models (Figure 

1, 2, 3). However, this study does not encompass 

longitudinal analysis, where the model would predict the 

onset of arthritis in the same patient based on their historical 

data, for two primary reasons: 1) The diagnosis results at 

each time point were self-reported, leading to potential 

inaccuracies in the longitudinal information associated with 

these results. 2) There was a lack of consistency in the self-

reported diagnosis results across the five examinations, 

posing challenges for the model's accurate classification. For 

example, some participant had arthritis during several years 

in the middle of the longitudinal study, but not at the 

beginning or the last several years. 

Random Forest, XGBoost (XGB), Support Vector 

Machine (SVM), and K-Nearest Neighbors (KNN) were 

exploited. Random Forest is an ensemble learning method 

known for its robustness and effectiveness in handling both 
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regression and classification tasks [16, 17]. XGBoost, 

standing for Extreme Gradient Boosting, is an optimized 

gradient boosting library that excels in speed and 

performance [21]. SVM is a versatile algorithm capable of 

performing linear and non-linear classification, outlier 

detection, renowned for its effectiveness in high-

dimensional spaces [20]. KNN, simple yet effective, is a 

non-parametric algorithm that classifies data based on the 

majority class of its nearest neighbors, making it intuitive 

and useful for classification and regression problems in 

various settings [22]. 

To our surprise, ML models and deep learning models 

preformed equally well. The accuracies of over 95% 

indicated the huge potential for machine learning model 

models to diagnose arthritis using electronic health data. 

Suggestions of arthritis risks in real-world clinical settings 

without using imaging results can potentially save costs for 

patients who did not have the disease, offer potential risk 

indicators for the development of arthritis, and redistribute 

resources for health care providers. Given the clinical 

setting, XGBoost or SVM would generally be the better 

choices in scenarios involving high-dimensional data. 

XGBoost is particularly advantageous for its performance 

with large, complex datasets, while SVM is suitable for 

cases where the dataset is not excessively large and the 

class separation is clear. Since the diagnosis is 

fundamentally a binary classification problem, both 

algorithms will work well. The final decision would depend 

on the specific dataset characteristics and clinical 

requirements. In some cases where the interpretability is 

more important than the prediction accuracy, the random 

forest model may have an advantage. 

Besides, the ROC curves with AUC values between 0.9 

and 0.95 (Figure 4) showed that the individual model had an 

around 90% chance to detect discriminate between a 

randomly chosen diseased participant and a randomly chosen 

healthy participant (Figure 1B, 2B & 4). Furthermore, the 

PPV was lower than the NPV in almost all models, indicating 

a potential bias during the training phase, even though all the 

training data was well balanced using oversampling or under-

sampling (Figure 1A & 2A) (Table 1 & 2). A lower Positive 

Predictive Value (PPV) compared to Negative Predictive 

Value (NPV) signifies a greater accuracy in identifying 

negative instances over positive ones. This discrepancy often 

arises due to a higher incidence of false positives, where the 

test or model incorrectly labels negative cases as positive. 

This can be particularly pronounced in situations where the 

condition's prevalence is low, leading to a situation where, 

despite high sensitivity and specificity, the PPV remains low 

due to the scarcity of true positive cases. 

The models developed in this study exhibited a 

consistent pattern of lower sensitivity of around 80% 

coupled with higher specificity, this is especially observed 

in the individual time analysis (Table 1). This trend 

suggests that while the models are highly effective in 

correctly identifying healthy patients, they are somewhat 

less adept at detecting diseased patients. Such a disparity 

could be attributed to various factors inherent in the dataset 

and the model architecture. It is possible that the dataset 

contains more distinct and consistent features for non-

arthritic cases, leading to higher specificity. In contrast, the 

heterogeneity in manifestations of arthritis might not be 

fully captured, affecting sensitivity. Also, imbalance in the 

dataset, with a possible under-representation of arthritic 

cases, could have biased the model towards the majority 

class, further contributing to this discrepancy. 

Notably, the K-nearest Neighbors model shows a 

relatively low accuracy and sensitivity score compared with 

other machine learning model (Table 2). This may be due to 

overfitting caused by the oversampling of the dataset in the 

high-dimensional space. KNN models, as mentioned in 

method section, plot the test data with the training data, and 

study the neighboring data points to make classifications, 

which resembles how SMOTE oversamples the data. 

Therefore, the oversampling strategy performed by SMOTE 

might overwhelm the KNN model. 

The SHAP value graphs from both the random forest 

and our specialized deep learning model (Figures 5 & 6) 

demonstrated the interpretability of our models by revealing 

similar influential variables that steer the predictions, 

despite the models being trained on distinct datasets and 

utilizing different learning algorithms. These graphs serve 

not only to validate the models' interpretability but also to 

confirm the consistency of variable importance across 

diverse analytical methods. For instance, systolic blood 

pressure, known to have a positive correlation with 

osteoarthritis onset, maintains a positive impact on the 

disease onset predictions made by both models (Figure 5A 

& B) [26]. In contrast, diastolic blood pressure is inversely 

related to the model’s predictions (Figure 6B). There were 

other significant variables, such as those related to the 20-

meter walk performance, the frequency of muscle-

strengthening leisure activities, and the intensity of 

household chores, whose relevance to the models' decisions 

is both consistent and logical (Figure 6). 

Our study does have several limitations. First, our 

results were not validated with an external EHR data set. 

Although OAI is a large, real-world clinical database, the 

study population may not be representative of the general 

arthritis population. In fact, a higher proportion of 

participants in this study have a risk for osteoarthritis than 

other types of arthritis, which can make the model predicting 

powers biased to osteoarthritis. Second, this study is a 

secondary analysis of observational EHR data, we relied on 

the data quality of the database. Missing data are present and 

documentation errors could occur, many variables are the 

subjective responses from patients and bias could occur 

through the timepoints. Data imputation process might 

neglect that and therefore imputing noisy data that influence 

the model performance. Thirdly, we relied on patient reports 

on whether they are diagnosed with arthritis. Some of the 

data points that are treated as non-diseased could have been 
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diseased but not diagnosed. Fourthly, the PPV was overall 

lower than the NPV (Table 1). The reason for the problem 

should be the scarcity of the data for diseased participants, 

leading to bias in the oversampling algorithm. Other studies 

in previous studies reduce this confounding variable by 

implementing assessing methods based on imaging results to 

robustly categorize patients’ disease states. Lastly, the 

training and testing data include results from the same 

patients at different time points. Despite that we dropped the 

column for patient’s ID, sequential and non-sequential deep 

learning models might “identify” patient through feature 

characteristics. This might result in biased accuracy for the 

model. Nevertheless, EHR-based study shows promise and 

potential in real world settings. 

 

Conclusions 

Arthritis is often underdiagnosed; many people do not 

take caring actions before symptoms get unmanageable. This 

study systematically explored the feasibility of using different 

AI algorithms including DL and ML models. Our study 

identified no significant difference in accuracy among 

different predicting models, but we compared the important 

features that each model used, which could be used to help 

reveal future research directions. The current models present 

the potential to identify patients with arthritis, it can be used 

as a screening technique to select susceptible patients for 

confirmatory studies. Future work shall focus on increasing 

model accuracy by increasing data size for both training and 

testing groups and include some EHR from the general public 

to reduce model bias. Other data sets should be used to 

validate the prediction models and a more knowledge-driven 

approach for variable filtering should be applied to increase 

the interpretability of the model. 
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