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Abstract 

Introduction: Head and neck squamous cell carcinoma (HNSCC) is a prevalent and aggressive cancer affecting mucosal 

linings, with increasing incidence in younger populations. Risk factors include tobacco, alcohol, and human papillomavirus 

(HPV) infection. Current treatments often result in significant side effects and limited success in preventing recurrence and 

metastasis. This study investigates the role of APOBEC3A, a cytidine deaminase, in HNSCC tumorigenesis, focusing on both 

deaminase-dependent and independent mechanisms. 

Methods: A systematic literature review was conducted, searching PubMed, Web of Science, Embase, and Cochrane Library 

databases for relevant studies published between 2013 and 2024. Key terms included "APOBEC3A," "cytidine deaminase," 

"cancer," and "oncogenesis." Articles involving experimental studies with human tumor samples, in vitro and in vivo models, 

and clinical studies were included. Data were extracted on study design, methods, and findings related to APOBEC3A's role 

in HNSCC. 

Results: APOBEC3A contributes to HNSCC through deaminase-dependent mechanisms, inducing C-to-T and C-to-G 

mutations, particularly in TP53 and PIK3CA genes, which are associated with tumor progression and resistance to therapies. 

Additionally, APOBEC3A's interaction with HPV further exacerbates genetic instability, leading to more aggressive tumor 

behavior. Deaminase-independent roles include modulation of the tumor microenvironment, influencing immune cell 

interactions and promoting immune evasion through cytokine production and PD-L1 expression. 

Discussion: APOBEC3A's dual roles in HNSCC highlight its significance in both promoting oncogenic mutations and 

modulating immune responses. The enzyme's activity not only contributes to tumorigenesis through direct genetic alterations 

but also indirectly by creating a favorable environment for tumor growth and survival. 

Conclusion: This study underscores the critical role of APOBEC3A in the pathogenesis of HNSCC and the need for targeted 

therapies addressing both its enzymatic and non-enzymatic functions. Future research should explore therapeutic strategies 

that inhibit APOBEC3A's activity and counteract its contributions to immune evasion and tumor progression. 
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Introduction 

Head and neck squamous cell carcinoma (HNSCC) is a 

group of aggressive cancers that develop from mucosal 

linings of the oral cavity, pharynx, and larynx [1]. HNSCC 

is responsible for around 4.5% of cancer diagnoses and 

deaths, with an estimated 890,000 new cases around the 

world and 450,000 deaths annually [2, 3]. Globally, 

HNSCC is more prevalent in men than women, and in 

adults over 50 years of age [3]. However, HNSCC rates are 

on the rise in younger populations, with studies predicting a 

30% annual increase by 2030 [3]. These shifting 

epidemiological trends underscore the urgency of 

identifying new molecular markers and therapeutic targets, 

driving the need for a more nuanced understanding of 

HNSCC pathogenesis in diverse patient populations. 

Risk factors for HNSCC include tobacco use, alcohol 

consumption, and human papillomavirus (HPV) infection. 

The current standard of care for HNSCC is radiotherapy 

and surgery for patients in Stage I and Stage II of disease 

[4]. In Stage I, the tumor is small (2 cm or less in diameter) 

and has not spread to lymph nodes or other parts of the 

body. In Stage II, the primary tumor is larger than 2 cm but 

not more than 4 cm in diameter [4]. Stages III and IV are 

characterized by metastasis to lymph nodes or other parts of 

the body and treatment typically involves concurrent 

chemoradiation therapy, often supplemented with targeted 
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therapies such as cetuximab [5]. Clinical trials have shown 

that cetuximab, when used with radiation therapy, 

significantly reduces the risk of disease progression or 

death by 30% (p = 0.006), thereby improving progression-

free survival [5-7]. Treatment decisions, including the 

choice between surgery and radiation, are tailored to the 

patient’s specific situation in a multidisciplinary setting [5]. 

Despite these advancements, comprehensive reviews that 

integrate the latest immunotherapeutic approaches and 

molecular-targeted strategies for HNSCC remain limited, 

highlighting a critical need for in-depth analyses of 

emerging treatment paradigms. 

Managing HNSCC is challenging due to its high rates 

of recurrence and metastasis. While the available treatments 

can effectively manage the disease to some extent, they 

often come with significant side effects that can impact 

overall patient health and quality of life [8]. Moreover, 

despite treatment, many patients still face a poor prognosis 

due to the aggressive nature of the disease itself. Thus, 

enhanced understanding of the molecular aspects of 

HNSCC is crucial for developing more effective diagnostic 

tools and therapeutic strategies that may improve outcomes 

and reduce treatment-related complications. Addressing 

these issues holistically and comparing innovative 

strategies across different stages of HNSCC can help 

researchers and clinicians identify the most promising 

avenues for personalized medicine. 

Genetic and genomic changes play a key role in the 

development and progression of HNSCC. Mutations in 

tumor suppressor genes such as TP53, and oncogenes such 

as PIK3CA and NOTCH1, as well as the disruption of 

signalling pathways such as the epidermal growth factor 

receptor pathway, are known to contribute to HNSCC 

through promoting uncontrolled cell growth, and evasion of 

apoptosis [1, 9, 10]. These genetic alterations can also 

increase tumor aggressiveness by enhancing cellular 

proliferation, invasion, and metastasis. Understanding the 

source of genetic alterations that drive HNSCC formation 

and progression is important for finding new therapeutic 

targets. In particular, synthesizing insights from diverse 

genetic studies to highlight common mutational signatures 

can illuminate novel points of therapeutic intervention and 

refine existing treatment frameworks. 

The Apolipoprotein B mRNA Editing Catalytic 

Polypeptide-like 3 (APOBEC3) family of cytidine 

deaminases, particularly APOBEC3A, has been identified as 

a significant contributor to oncogenic mutations such as 

PKCα/NF-κB dysregulation pertaining to cell cycle 

disruptions observed in HNSCC [11]. Normally, 

APOBEC3A, a member of the APOBEC family, primarily 

functions in the innate immune system by providing antiviral 

defence [12]. It edits viral DNA and RNA through cytidine 

deamination, converting cytosine to uracil. This leads to 

hypermutation in viral genomes, inhibiting viral replication 

[13]. APOBEC3A also restricts endogenous retroelements, 

thereby maintaining genomic stability and protecting against 

mutagenic events. In addition to these deaminase-dependent 

mechanisms, APOBEC3A also contributes to innate immune 

defense through deaminase-independent means, such as 

modulating other cellular pathways that affect immune 

response. Through these diverse mechanisms, both 

deaminase-dependent and independent, APOBEC3A 

safeguards cellular integrity and defends against viral 

infections. While several reviews have addressed the 

APOBEC3 family in general, few have provided a focused 

examination of APOBEC3A’s dual roles in HNSCC, 

emphasizing both canonical (deaminase-dependent) and 

emerging (deaminase-independent) pathways. By doing so, 

this work aims to delineate a more complete molecular 

profile that could guide future therapeutic development. 

However, despite its role in protecting the genome, 

APOBEC3A can paradoxically contribute to oncogenesis. 

When dysregulated, APOBEC3A, through its cytidine 

deaminase activity, can induce mutations in tumor suppressor 

genes and pathways, further driving the genetic diversity and 

evolution of HNSCC, leading to increased tumor progression 

and therapy resistance. This paper aims to explore the genetic 

and molecular factors involved in HNSCC progression and 

metastasis, focusing on the deaminase dependent and 

independent means by which APOBEC3A contributes to 

these processes. 

 

Methods 

To investigate the role of APOBEC3A in HNSCC, a 

systematic literature review was conducted. The databases 

searched included PubMed, Web of Science, Embase, and 

the Cochrane Library, targeting articles published in the last 

decade (2013-2024) to ensure the inclusion of recent and 

relevant studies. Keywords such as "APOBEC3A," 

"cytidine deaminase," "cancer," and "oncogenesis" were 

used in various combinations, along with specific terms 

related to HNSCC. Boolean operators and Medical Subject 

Headings (MeSH) terms were employed to refine the 

search. Articles were limited to those published in English 

and included experimental studies involving human tumor 

samples, in vitro and in vivo models, and clinical studies. 

Titles and abstracts of identified articles were screened 

for relevance, followed by a full-text review of validated 

studies to further assess the significance to the research 

question. Data were extracted from the included studies 

regarding study design, experimental methods, sample 

types, and main findings related to APOBEC3A's role in 

HNSCC. This comprehensive approach aimed to elucidate 

the multifaceted role of APOBEC3A in HNSCC 

pathogenesis. 

 

Results 

Deaminase-Dependent Tumorigenesis in HNSCC 

In HNSCC, a distinct mutational pattern characterized 

by C-to-T and C-to-G mutations is often observed [14]. 

This pattern is notably prevalent in specific trinucleotide 

contexts, such as TCA and TCT, which indicates a targeted 
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mutational process [13]. Among the APOBEC family, 

APOBEC3A has been identified as a key contributor to the 

mutational landscape of HNSCC. Isozaki et al. studied 

APOBEC3A mutational burden across cancer cell types and 

the mechanisms influencing tumor evolution during 

treatment. They identified that a substantial portion of new 

mutations in their study exhibited an APOBEC signature, 

specifically C-to-T and C-to-G substitutions at TpC motifs 

[17]. 

Their mutation analysis of patient-derived cell lines 

demonstrated enriched APOBEC signatures within resistant 

clones. Isozaki et al. also observed a multifold induction of 

APOBEC3A expression in non-small cell lung cancer 

(NSCLC) cell lines, with a strong correlation between 

APOBEC3A RNA transcription levels and RNA editing 

[17]. NSCLC and HNSCC are both squamous cell 

carcinomas and share many phenotypic and molecular 

characteristics, as well as similar responsiveness to other 

targeted therapies for both cancers [18, 19]. Similar to 

HNSCC, increased APOBEC3A activity has been 

implicated in the mutation landscape of NSCLC, as Isozaki 

et al. found that digital PCR sensitive to APOBEC3A 

activity significantly increased C-to-U editing in mutant 

NSCLC cell lines [20]. 

 

Synergy Between HPV Infection and APOBEC3A 

Recent studies have demonstrated a synergistic effect 

between HPV infection and APOBEC3A mutational 

signatures in driving the oncogenesis of HNSCC [20]. The 

APOBEC3A mutational signature was observed in 98% of 

HPV+ HNSCC compared to 76% in HPV- HNSCCs [21]. 

Bioinformatics analysis of tumor exomes from 511 HNSCC 

patients highlighted a strong correlation between elevated 

APOBEC3A expression and increased mutational burden, 

which was significantly associated with the rate of HPV 

integration into the host genome and worse clinical 

outcomes in these patients [10, 22, 23]. HPV infects basal 

epithelial cells and utilizes the host's DNA replication 

machinery for viral replication, with HPV33 being a 

common subtype associated with HNSCC [2, 20]. 

Concurrently, APOBEC3A induces permanent C-to-T 

transitions, particularly targeting critical tumor suppressor 

genes such as TP53 [24, 25]. Studies have identified a high 

frequency of transition mutations at cytidine bases, 

missense mutations, and allelic loss within TP53, which are 

characteristic of APOBEC3A’s action. 

Multiple studies have reported that APOBEC3A-

mediated mutations, especially those within TP53 and 

PIK3CA, are highly prevalent in HPV+ HNSCC. Point 

mutations in TP53’s binding domain, such as R248W and 

R273H, can impair apoptosis and facilitate unchecked cell 

division [39]. 

 

Deaminase-Independent Mechanisms 

In HNSCC, APOBEC3A influences cytokine 

production, significantly altering the landscape of immune 

cell interactions within the tumor [41]. It enhances the 

production of key cytokines such as interleukin-1 beta 

(IL1B), which not only promotes the polarization of M1 

macrophages, but also supports an inflammatory 

environment conducive to immune cell recruitment and 

activation. Upregulation of APOBEC3A, which is commonly 

observed in HNSCC, has been linked to increased expression 

of immune checkpoint molecules such as PD-L1 through 

CD8+ T cell inhibition and PKCα/NF-κB regulation [42]. 

Additionally, a study by Løvestad et al. indicates that in 

HNSCC-associated HPV variants, such as HPV33+ HNSCC, 

there is a reduced infiltration of CD8+ cytotoxic T-cells 

compared to HPV16+ tumors [43]. TGFB1 is notably higher 

in HPV33+ tumors compared to HPV16+ tumors [45, 46]. 

Specifically, Chatfield-Reed et al. showed that CD8+ 

cytotoxic T-cell infiltration was reduced by 2.7% in HPV33+ 

tumors compared to HPV16+ tumors (p = 0.007) [45]. 

APOBEC3A modulates dendritic cells and T cells, 

affecting their functional roles within the immune system 

and thus impacting the efficacy of immunotherapeutic 

strategies like checkpoint inhibitors and cellular therapies 

[23]. Importantly, studies have shown that APOBEC3A, 

along with other factors like Protein Kinase C alpha 

(PKCα) and Nuclear Factor kappa B (NF-κB), form a 

regulatory circuit [49]. 

APOBEC3A has been shown to influence DNA repair 

processes and cell cycle regulation independent of its 

catalytic activity. When Landry et al. analyzed the effect of 

APOBEC3A expression on downstream substrates within 

the DNA damage signaling cascade, they found 

phosphorylated replication proteins within the 

APOBEC3A-expressing cell signaling cascade [51]. They 

further demonstrated, through staining and TUNEL assays, 

that APOBEC3A expression in cells was correlated with 

observed DNA breakages and cleavages that were not the 

result of apoptosis. Cells induced for APOBEC3A 

expression were further noted to enter arrests at the G1 and 

S stages of the cell cycle. 

 

Discussion 

Deaminase-Dependent Tumorigenesis in HNSCC 

Mutations associated with the APOBEC family of 

enzymes, particularly APOBEC3A, result from 

deamination of cytidine residues in single-stranded DNA, 

converting cytosine to uracil [15]. This enzymatic activity 

leads to the formation of uracil during DNA replication, 

causing C-to-T transitions and, through error-prone repair 

mechanisms, C-to-G transversions. These mutations 

contribute significantly to the mutational burden observed 

in cancer genomes, including HNSCC [16]. APOBEC3A's 

higher catalytic activity and preference for single-stranded 

DNA regions, transiently exposed during DNA replication 

and transcription, make it a potent mutator in the context of 

genomic instability [16]. 

These mutations increase genetic diversity, contributing 

to chemotherapeutic drug resistance by altering drug targets 
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and generating secondary mutations, such as the T790M 

mutation in APOBEC3A-induced carcinomas. This activity 

provides a survival advantage, enabling the selection of 

resistant cell clones, triggering DNA damage response 

pathways, and contributing to genomic instability. In extreme 

cases, this DNA damage can push cells into a quiescent state, 

rendering standard radiation therapies less effective [17]. 

Increased APOBEC3A activity may be a response to targeted 

therapies in oncogene-driven cancer cells, suggesting its role 

in driving therapy resistance. Given the similarities between 

the mutation landscapes of NSCLC and HNSCC, 

APOBEC3A-induced mutations likely contribute to genetic 

heterogeneity and therapy resistance in both cancers. 

Understanding the specific mutations induced by 

APOBEC3A is crucial for designing targeted therapies that 

can circumvent or counteract these resistance mechanisms. 

Although these findings highlight APOBEC3A's pivotal role 

in driving oncogenesis in HPV-related cancers, further in vivo 

studies are needed to understand the synergistic role of HPV 

and APOBEC3A in HNSCC proliferation more definitively. 

One of the most frequently mutated genes in cancer, 

TP53, plays a key role in regulating the cell cycle and 

apoptosis [26]. Mutations in TP53, especially in the 

presence of APOBEC3A, compromise p53’s tumor 

suppressor functions [26-28]. In epithelial cells, the loss of 

function of p53, exacerbated by HPV’s E6 oncoprotein, 

contributes to oncogenesis. E6 binds to p53, facilitating its 

ubiquitination and degradation, while E7 binds to pRb, 

inhibiting pRb’s ability to regulate the cell cycle by 

releasing E2F transcription factors [31-33]. As a result, 

DNA replication and cell division proceed unchecked, 

leading to genetic abnormalities and promoting oncogenesis 

[20]. The interaction between APOBEC3A's mutagenic 

activity and HPV's disruption of cell cycle and apoptosis 

control highlights the importance of precision medicine 

approaches in HNSCC treatment [20]. 

In addition, APOBEC3A interacts with BCL-2, an anti-

apoptotic protein, stabilizing it and promoting the survival 

of genetically altered cells. This interaction prevents the 

apoptotic clearance of potentially malignant cells, 

contributing to tumor resilience and complexity [20]. 

Mutations in PICK3CA, such as E545K and H1047R, lead 

to enhanced kinase activity and oncogenic signalling, 

contributing to both tumor growth and therapy resistance 

[40]. The specific interaction between APOBEC3A, HPV-

driven mutations, and the disruption of cell cycle and 

apoptosis control points to a need for therapies targeting 

molecular abnormalities caused by APOBEC3A and HPV. 

Approaches that inhibit APOBEC3A directly or correct 

mutations in TP53 and PICK3CA may improve therapeutic 

efficacy and patient outcomes. 

 

Deaminase-Independent Mechanisms and Influence on 

Tumor Microenvironment 

Beyond its genomic mutagenesis, APOBEC3A plays a 

significant role in modulating the tumor microenvironment 

in HNSCC. It enhances cytokine production, such as 

interleukin-1 beta (IL1B), promoting the polarization of M1 

macrophages and fostering an inflammatory environment 

that supports immune cell recruitment and activation [41]. 

While this creates an immunologically active 

microenvironment, it simultaneously aids tumor immune 

evasion. Upregulation of APOBEC3A has been linked to 

increased expression of immune checkpoint molecules like 

PD-L1 through CD8+ T cell inhibition and PKCα/NF-κB 

regulation, further contributing to immune escape [42]. 

The reduced infiltration of CD8+ cytotoxic T-cells, 

particularly in HPV33+ HNSCC compared to HPV16+ 

tumors, suggests that APOBEC3A may also play a role in 

evading immune surveillance [43]. Elevated TGFB1 levels 

in HPV33+ tumors, compared to HPV16+ tumors, further 

suppress T-cell function, diminishing the immune response 

and complicating immunotherapies [45, 46]. The distinct 

genomic landscape of HPV33+ tumors, including higher 

aneuploidy and frequent 3p loss, correlates with these 

immunological disparities, making this subtype particularly 

challenging to treat [45]. 

Moreover, APOBEC3A regulates PD-L1, a protein that 

binds to PD-1 on CD8+ T cells, inhibiting their activity and 

enabling tumor immune evasion. Increased APOBEC3A 

expression leads to higher PD-L1 levels, thereby enhancing 

the tumor’s ability to evade immune responses [47]. 

Additionally, APOBEC3A modulates dendritic cells and T 

cells, impacting their functional roles within the immune 

system and influencing the efficacy of immunotherapeutic 

strategies like checkpoint inhibitors [23]. 

Recent studies suggest that under normal physiological 

conditions, PKCα/NF-κB-mediated regulation plays a crucial 

role in maintaining immune homeostasis and response to 

pathogens. However, dysregulation of this regulatory circuit 

can alter the immunogenicity of HNSCC, potentially aiding 

tumor growth and immune evasion [50]. Another mechanism 

by which APOBEC3A affects the tumor microenvironment 

involves cell cycle regulation through deaminase-

independent mechanisms. APOBEC3A’s influence on DNA 

repair and its role in cell cycle arrest at the G1 and S stages 

indicate its broader impact on genome destabilization [51]. 

APOBEC3A’s role in activating damage kinases and 

contributing to DNA damage complicates its potential as a 

therapeutic target, as inhibiting its mutagenic activity could 

have unintended consequences on cellular homeostasis. 

 

Conclusion 

In this paper, we have outlined the significant roles of 

APOBEC3A in the development and progression of 

HNSCC. Our systematic review of the literature and 

analysis of data reveal how APOBEC3A's cytidine 

deaminase activity contributes to the oncogenic mutations 

observed in HNSCC and drives genetic diversity thus 

complicating therapeutic intervention. By detailing its role 

in inducing key mutations within tumor suppressor genes 

and oncogenic pathways, we highlight the critical need for 
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strategies that address dysregulation of APOBEC3A as a 

preventative measure against HNSCC formation and 

progression. Moreover, the interplay between APOBEC3A 

and HPV infection, particularly in modifying the tumor 

microenvironment and enhancing resistance to conventional 

treatments such as chemoradiation, underscores the 

enzyme's impact on clinical outcomes. 

Further, our research extends beyond the enzymatic 

functions of APOBEC3A to explore its deaminase-

independent roles, which influence cellular behavior and 

tumor dynamics through mechanisms like tumor suppressor 

gene pathways, CD8+ T cell activation, and DNA repair 

processes. These findings suggest that APOBEC3A 

contributes to tumor progression not only through direct 

mutational mechanisms but also by altering head and neck 

squamous cell homeostasis and division regulatory 

networks and their immune responses. Our analysis not 

only deepens understanding of APOBEC3A's roles in 

HNSCC, but also paves the way for targeted research into 

novel therapeutic approaches that specifically modulate 

APOBEC3A's enzymatic and non-enzymatic pathways. 

Building on these insights, further in vivo experiments are 

warranted to clarify the synergistic roles of HPV and 

APOBEC3A in HNSCC proliferation and therapy 

resistance. Future research should focus on developing 

targeted interventions that mitigate APOBEC3A-induced 

mutagenesis, refining immunotherapeutic strategies to 

address immune evasion mechanisms, and exploring how 

deaminase-independent pathways can be harnessed to 

improve patient outcomes. Thus, we highlight the 

importance of considering both the deaminase dependent 

and independent means by which APOBEC3A contributes 

to HNSCC tumorigenesis and progression so that more 

effective therapies can be developed. 
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APOBEC3: apolipoprotein B mRNA editing enzyme, 

catalytic polypeptide-like 3 

BCL-2: B-cell lymphoma 2 

C-to-G: cytosine to guanine 

C-to-T: cytosine to thymine 

DNA: deoxyribonucleic acid 

E2F: E2F transcription factor 

HNSCC: head and neck squamous cell carcinoma 

HPV: human papillomavirus 

IL1B: interleukin 1 beta 

MeSH: medical subject headings 

NF-κB: nuclear factor kappa-light-chain-enhancer of 

activated B cells 

NSCLC: non-small cell lung cancer 

p53: tumor protein P53 

PCR: polymerase chain reaction 

PD-1: programmed death-1 

PD-L1: programmed death-ligand 1 

PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase 

catalytic subunit alpha 

PKCα: protein kinase C alpha 

pRb: retinoblastoma protein 

T790M: threonine 790 to methionine mutation 

TCA: thymine-cytosine-adenine 

TCT: thymine-cytosine-thymine 

TGFB1: transforming growth factor beta 1 

TP53: tumor protein P53 

TpC Motifs: thymidine preceded by a cytosine motifs 

TUNEL assays: terminal deoxynucleotidyl transferase 

dUTP nick end labeling assays 
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