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Abstract

Introduction: Maternal physiological systems undergo critical adaptations during pregnancy to maintain homeostasis.
Leptin, an adipocyte-derived hormone, is a critical regulator of energy balance and metabolism, particularly in the early
stages of pregnancy. Previous studies demonstrate that hyperleptinemia induces leptin resistance, suppresses feelings of
satiety, and increases the risk of gestational diabetes. This study aims to investigate the role of leptin resistance in
maternal obesity with mouse models. By understanding leptin resistance, which remains underexplored, pathways can be
identified to reduce the risks of excessive weight gain during pregnancy and transmission of health complications to
offspring.

Methods: The study will utilize female wild-type (C57BL/6) mice of similar ages, maintained in a controlled environment.
The experimental group will receive a high-fat diet (HFD) to elevate leptin levels, while the control group will be fed a
standard diet. Initial measurements of body mass, food intake, and plasma leptin levels will be recorded to establish a
baseline. These measurements will be taken weekly to examine the relationship between leptin levels and the anthropometric
data of the mice. To specifically assess leptin resistance, food intake and body mass will be closely monitored in mice
exhibiting hyperleptinemia.

Anticipated Results: Results are anticipated to demonstrate that leptin resistance impairs maternal metabolic adaptations
during pregnancy, leading to altered glucose homeostasis and increased fat mass. Elevated leptin levels are associated with
increased adiposity, increasing the risk of maternal obesity. Mice with hyperleptinemia will exhibit increased food intake and
body mass, indicating a state of leptin resistance. Persistent weight gain and increased food consumption in these mice will
suggest leptin resistance, contributing to metabolic dysregulation and an increased risk of gestational diabetes and obesity.
Offspring may exhibit higher birth weights and metabolic dysfunction, supporting the Developmental Origins of Health and
Disease (DOHaD) hypothesis.

Conclusion: Understanding the role of leptin in pregnancy can identify pathways involved in gestational disorders. The
investigation aims to inform therapeutic strategies targeting leptin signaling to prevent the transmission of health
complications to offspring. By elucidating mechanisms of leptin resistance, the study aims to contribute to interventions that
mitigate risks associated with maternal obesity during pregnancy.
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Introduction

Maternal physiology undergoes profound adaptations
during pregnancy to sustain fetal development and ensure
metabolic homeostasis. A central aspect of these changes
involves hormonally mediated metabolic regulation [1].
Among these key regulators is the adipocyte-derived
hormone leptin, which governs appetite, energy balance,
and metabolic function [2]. In non-pregnant individuals,
elevated leptin levels suppress hunger and enhance
energy expenditure [2]. However, during pregnancy,
leptin concentrations rise significantly, a critical
adaptation that ensures sufficient energy availability for
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fetal growth and underscores leptin’s essential role in
gestation [3].

Leptin’s effects on satiety are primarily mediated by its
binding to the long-form leptin receptor (Ob-Rb) in the
hypothalamus and initiating a signalling cascade [4]. This
activates the Janus kinase 2 (JAK2)/signal transducer and
activator of transcription 3 (STAT3) pathway, where JAK2
phosphorylates Ob-Rb and enables recruitment of STAT3
[4]. Phosphorylated STAT3 dimerizes and translocates
to the nucleus to regulate target genes that suppress
appetite and promote energy expenditure, such as
pro-opiomelanocortin  (POMC), while downregulating
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orexigenic signals such as neuropeptide Y (NPY) and
Agouti-related peptide (AgRP) [4].

Beyond its metabolic effects, leptin acts as a
pleiotropic hormone, influencing diverse physiological
processes independent of body weight. These include
vascular function, bone and cartilage growth, and immune
modulation [3]. Notably, leptin plays a pivotal role in
neonatal development. During gestation, it is secreted by
both the placenta and fetal adipose tissue, where it
contributes to the regulation of growth, neurodevelopment,
and long-term metabolic programming of offspring [5].
Postnatally, milk-borne maternal leptin may offer protective
benefits; adequate exposure during lactation has been
linked to reduced susceptibility to obesity and metabolic
dysfunction in adulthood [6].

Pregnancy-induced metabolic adaptations increase
adipose tissue mass, elevating leptin secretion and
contributing to hyperleptinemia [7,8]. However, prolonged
exposure to high leptin levels can induce leptin resistance, a
condition characterized by impaired leptin signaling and
blunted cellular responses [9]. This is often due to
downregulation or dysfunction of the Ob-Rb receptor or
impaired activation of downstream effectors such as
STAT3, disrupting hypothalamic appetite regulation [4].
Consequently, despite elevated circulating leptin, resistance
disrupts the hormone’s regulatory effects on appetite, fat
storage, and glucose metabolism [10]. This creates a
positive feedback loop; impaired leptin signaling promotes
increased caloric intake, further expanding adipose tissue
and driving additional leptin secretion. While this
adaptation ensures energy availability for fetal growth and
lactation, excessive weight gain and metabolic
dysregulation heighten the risk of complications in both the
mother and offspring [3].

Leptin resistance during pregnancy can confer lasting
implications on maternal health. While it may contribute
to gestational diabetes during pregnancy, postpartum,
persistent leptin resistance may hinder metabolic
recovery, contributing to chronic weight retention and
difficulties with weight loss [11]. This metabolic
dysfunction increases susceptibility to insulin resistance,
type 2 diabetes, and cardiovascular disease [12].
Furthermore, disrupted leptin signaling can impair
appetite regulation, complicating efforts to maintain
healthy dietary habits [13]. These effects create a self-
perpetuating cycle that exacerbates obesity and metabolic
syndrome after pregnancy.

The Developmental Origins of Health and Disease
(DOHaD) hypothesis posits that fetal and early postnatal
environments shape long-term health outcomes via
developmental plasticity [14]. Maternal hyperleptinemia
and leptin resistance may program offspring energy
homeostasis, influencing fetal metabolism, appetite
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regulation, and adiposity, thereby increasing risks of
obesity and metabolic disorders [15,16]. Early postnatal life
represents a critical window of wvulnerability, where
nutritional and hormonal fluctuations can predispose
offspring to leptin resistance, altered dietary preferences,
and metabolic disease, particularly if postnatal conditions
mismatch intrauterine programming [17,18].

While leptin’s role in regulating energy balance is
well-documented, its complex and evolving functions in
pregnancy, particularly in maternal obesity, leptin
resistance, and intergenerational metabolic effects,
remain less understood. This study aims to investigate the
role of leptin resistance during pregnancy by using a
mouse model to elucidate underlying mechanisms and
their implications for both mothers and offspring. It is
hypothesized that leptin resistance is mediated by
downregulated Ob-Rb  expression and impaired
JAK2/STAT3 signaling, resulting in blunted central
leptin responses [4]. Additionally, it is hypothesized that
a maternal high-fat diet (HFD) induces hyperleptinemia
and central leptin resistance, leading to systemic
metabolic dysregulation during pregnancy—including
impaired glucose tolerance, increased adiposity, and beta-
cell hypertrophy—which persist postpartum and are
transmitted to offspring, predisposing them to early-onset
obesity, insulin resistance, and hepatic steatosis through
disrupted hypothalamic leptin signaling and altered
energy homeostasis.

Methods
Animal Model

The study will utilize female wild-type C57BL/6 mice,
a well-characterized model for their robust metabolic
response to HFD and frequent breeding, making them an
ideal model for studying leptin resistance [19]. In addition,
C57BL/6 mice offer a translational framework for
investigating these mechanisms, as their genetic and
physiological traits closely mirror human metabolic
adaptations, including susceptibility to diet-induced obesity
and leptin resistance [20].

Mice will be 8 to 10 weeks of age at the beginning of
the experiment to control age-related variations in
metabolism. They will be maintained in a controlled
environment with a 12-hour light-dark cycle, temperature
set at 22°C + 1°C, and humidity between 40-60% with
water provided ad libitum. Pregnant females will be singly
housed after copulation plus detection (E0.5) to prevent
inter-dam aggression and allow individual monitoring of
food intake. While single housing can affect stress and
metabolism, adult female C57BL/6 mice have not shown to
exhibit significant corticosterone elevation under these
conditions [21]. Housing conditions will be monitored
regularly.
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Figure 1. Graphical Abstract for the Experimental Procedure. Pregnancy will be initiated in the mice. At Week 0, pregnant
dams will be assigned HFD or control diet (N = 6 per group). Experimental tests will be performed to monitor food intake,
weight, and blood glucose and insulin. Histological analysis of maternal tissue will be performed at postnatal day 21 (PD21).

Figure created with BioRender (https://www.biorender.com/).

Pregnancy Induction

To initiate pregnancy, female mice will be paired with
age-matched male C57BL/6 mice in a 2:1 ratio, allowing
for natural breeding. Pregnancy will be confirmed by the
presence of a copulation plug, marking embryonic day 0.5
(E0.5). Mice will then be randomly assigned to either the
HFD or control diet group (Figure 1). Gestational age will
be carefully tracked, with the study being conducted
within the range, E18.5 to E20. Embryos beyond E20 may
be too large, while those before E18.5 may not be fully
developed [22].

Experimental Design
The study will consist of two groups: an experimental
group and a control group. The control group will contain

C57BL/6 mice fed a standard diet (13% kcal from fat,
LabDiet 5053) to serve as the control for comparison. The
experimental group will contain C57BL/6 mice fed a high-
fat diet (60% kcal from fat, Research Diets D12492) to
induce hyperleptinemia and potentially leptin resistance
during their perinatal period. A GraphPad power analysis
will determine the required sample size for statistical
significance. Since pilot data is unavailable, a sample size of
six mice per group (N = 6) will be used. Dietary intervention
will begin on E0.5 and continue until the end point of the
study (Table 1). All mice will be monitored daily for general
health and behavior (Figure 2). Researchers performing
metabolic measurements, leptin assays, and histological
analyses will be blinded to group allocation to minimize bias
during data collection and interpretation.

Table 1. Cohort Structure, Dietary Regimens, and Dosage Information

N= Cohort Group Diet % kcal from fat
6 Control C57BL/6 mice Standard Diet 13% kcal from fat
6 Experimental C57BL/6 mice High-Fat Diet (HFD) 60% kcal from fat
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Figure 2. Maternal Mouse Model for Dietary Manipulation and Experimental Assessment. Two female and one male
C57BL/6J mice were housed together to facilitate natural breeding. Upon detection of a vaginal plug (E0.5), pregnant
females were separated and randomly assigned to one of two dietary groups: a high-fat diet (HFD; 60% kcal from fat) or a
control diet (13% kcal from fat), with N = 6 per group. Maternal mice remained on their respective diets from Embryonic day
0.5 (E0.5) to postnatal day 21 (PD21). Experimental endpoints included metabolic testing and tissue collection to assess the

impact of maternal diet on glucose
(https://www.biorender.com/).

Pre-Treatment Baseline Measurements

Baseline measurements will be collected for all mice in
the experimental and control groups seven days prior to
dietary intervention (Week 0). Mice will be weighed using
an electronic balance to establish an initial body weight.
Body mass will be recorded weekly throughout the 30-day
study period using the same electronic balance. Food intake
will be measured weekly by weighing the food provided
and food remaining at the end of each week. Weekly
average food intake will be calculated for each mouse.
Blood samples will be collected via tail vein bleed at
baseline to assess initial plasma leptin levels using an
ELISA kit (R&D Systems) [23]. Plasma will be stored at -
80°C until analysis.

Leptin Resistance Assessment

To specifically assess leptin resistance, blood samples
will be collected at baseline and E0.5, E7, E14, and E18.5
via tail vein bleed. Persistently elevated leptin levels in the
experimental group, despite continued HFD consumption,
will indicate the development of leptin resistance [24]. On
E18.5, mice from the experimental group (N = 6) and
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regulation and organ morphology. Figure

created with BioRender

control group (N = 6) will be injected intraperitoneally with
leptin, and food intake will be measured over the
subsequent 24 hours. A significant reduction in food intake
in control mice but not in the experimental group will
indicate leptin resistance [24].

Metabolic and Physiological Assessments

At baseline and EO0.5, E7, El14, and E18.5, body
composition (fat mass vs. lean mass) will be assessed using
quantitative magnetic resonance (QMR) imaging in mothers.
To assess dysfunction, glucose tolerance tests (GTT) and
insulin tolerance tests (ITT) will be performed on the
mothers at E0.5, E7, E14, and E18.5 (Figure 3). For GTT,
mice will be fasted for 6 hours before an intraperitoneal
injection of glucose (dose: 1.5 g/kg body mass), and blood
glucose levels will be measured at 0, 15, 30, 60, and 120
minutes using a glucometer (Figure 3). For ITT, mice will
receive an intraperitoneal injection of insulin (dose: 0.75
IU/kg body mass), and glucose levels will be measured at
the same time points (Figure 3). Impaired glucose clearance
in the experimental group will suggest metabolic
dysfunction associated with leptin resistance [25].
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Figure 3. Glucose and Insulin Tolerance Testing in Pregnant Mice. Mice were fasted for 6 hours before intraperitoneal
injection of glucose or insulin to assess metabolic function at key gestational timepoints (E0.5, E7, E14, and E18.5).
Blood glucose levels were monitored via tail vein sampling at baseline and multiple timepoints post-injection (0, 15, 30,
60, and 120 minutes) to evaluate glucose clearance and insulin sensitivity. Data from these tests were used
to identify diet-induced impairments in glucose homeostasis during pregnancy. Figure created with BioRender

(https://www.biorender.com/).

Pregnancy Monitoring
Mice will be monitored for pregnancy and general

health throughout gestation. Body mass, food intake, and
plasma leptin levels will be measured at E0.5, E7, E14, and
E18.5. Timed mating will be used to ensure accuracy in
gestational tracking, with mating confirmed by the presence
of a copulation plug. Data will be excluded if maternal mice
give birth before E18.5 or carry past-term beyond E20,
ensuring that only data from pregnancies with a normal
gestational period are included [26]. This controls for
abnormal or preterm births.

Pup Monitoring
Pups will be monitored during the early postnatal

period to assess the developmental impact of maternal
hyperleptinemia and leptin resistance. At weaning (PD21),
body weight and food intake will be recorded to evaluate

Hong et al. | URNCST Journal (2025): Volume 9, Issue 11

DOI Link: https://doi.org/10.26685/urncst.903

early growth trends [27]. GTTs and ITTs will be
performed using age-appropriate protocols to assess
glucose metabolism and insulin sensitivity in offspring.
Blood samples will be collected for leptin analysis using
an ELISA kit, allowing comparison of circulating leptin
levels between pups from the HFD and control group
dams.

Histology Analysis

At the end point of the study, mice will be euthanized
using sodium pentobarbital via a single-dose injection [28].
Maternal mice will be sacrificed after the completion of
pregnancy on PD21 for the measurement of any postnatal
physiological changes. Histological analyses will focus on
structural and morphological differences in tissues
(Table 2). Tissues from organs, including the pancreas,
brain, and liver, will be harvested (Figure 4).
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Figure 4. Tissue Collection and Histological Analysis on Postnatal Day 21 (PD21). At the experimental endpoint (PD21),
offspring will be euthanized using sodium pentobarbital. Following euthanasia, the pancreas, liver, and brain (including the
hypothalamus) will be dissected and collected. These tissues will be fixed, processed, and embedded for histological analysis
to assess structural and cellular changes associated with maternal dietary intervention. Figure created with BioRender

(https://www.biorender.com/).

Table 2. Experimental Treatment Groups and Expected Outcomes

Group Diet Assessed Tissue Assays Performed Expected Outcomes
Control Standard Pancreas IHC, insulin Normal insulin expression and
staining glucose metabolism
immunoassays
Experimental HFD IHC, insulin Altered insulin expression and
staining impaired glucose tolerance,
immunoassays indicating insulin resistance
Control Standard Hypothalamus P-STAT3 IHC Normal leptin signaling in
arcuate nucleus
Experimental HFD P-STAT3 IHC Decreased P-STAT3 staining,
indicating disrupted leptin
signaling
Control Standard Liver Oil Red O staining | Low lipid accumulation
Experimental HFD Oil Red O staining | Increased lipid accumulation
and early signs of hepatic
dysfunction
Pancreas morphology under conditions of leptin resistance or

Pancreatic tissue will be examined for beta-cell
morphology, insulin staining, and inflammatory markers
in maternal mice. Pancreatic beta cells are crucial for
insulin production and may demonstrate changes in
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metabolic stress [24]. Immunohistochemistry (IHC) will
be performed on pancreatic tissue to assess beta-cell
morphology. Insulin staining will be performed to assess
the functional impact of leptin resistance on insulin
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secretion and beta-cell function. Finally, markers such as
TNF-o and interleukin-6 (IL-6) will be assessed via
ELISA, as obesity and leptin resistance frequently
promote inflammation [30].

Brain (Hypothalamus)

Leptin typically acts on several brain nuclei within the
hypothalamus due to its role in regulating appetite and
energy balance [31]. Thus, female mice will likely show
alterations in leptin  signaling pathways under
hyperleptinemic  conditions.  Using  phospho-signal
transducer and activator of transcription (P-STAT3) IHC,
leptin-responsive cells in the brain will be mapped from a
cross-section of the hypothalamus [10]. To further assess
leptin sensitivity, hypothalamic tissue will also be collected
at the experimental endpoint (PD21) to quantify leptin
receptor (Ob-Rb) expression. Western blot analysis will be
performed to evaluate Ob-Rb protein levels. This will help
determine whether HFD-induced hyperleptinemia leads to
central leptin receptor downregulation.

Liver

The liver plays a central role in lipid metabolism and is
highly sensitive to metabolic alterations induced by HFD.
To assess this, liver cryosections will be stained with Oil
Red O, a lipid-specific dye that highlights neutral lipid
deposits [32]. Quantification of Oil Red O staining will
provide a visual marker for lipid accumulation.

Statistical Analysis

Group comparisons will be conducted using two-way
repeated measures ANOVA for time-course data and
unpaired t-tests for endpoint measurements. Data will be
presented as means + standard deviations (SD). Statistical
significance will be set at p < 0.05. GraphPad software will
be used for all statistical analyses.

Results
Plasma Leptin and Leptin Resistance Development

It is expected that mice on the HFD will exhibit increased
plasma leptin levels, increased food intake, and significant
weight gain, consistent with the development of leptin
resistance. The control group is expected to maintain normal
food intake, lower blood leptin levels, and stable body weight
[33]. Mice with leptin resistance will likely demonstrate
impaired glucose tolerance and increased adiposity,
highlighting the metabolic dysregulation that contributes to
maternal obesity and gestational complications [33].

Metabolic and Physiological Adaptations

Mice in the HFD group are expected to demonstrate a
progressive increase in body weight [33]. A higher fat mass
percentage and lower lean mass in the HFD group are also
expected to be revealed during QMR imaging [33]. Food
intake is predicted to be significantly greater in HFD mice.
Additionally, glucose tolerance tests may show impaired
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glucose clearance in the HFD group, with significantly
higher blood glucose levels at all timepoints post-glucose
injection (15, 30, 60, and 120 minutes), indicating
gestational glucose intolerance [34]. Insulin tolerance tests
may reveal a diminished hypoglycemic response in HFD
mice, suggesting insulin resistance.

Pregnancy Outcomes
HFD-fed mice may experience altered pregnancy

outcomes, including increased gestational weight gain and
prolonged gestation length compared to controls [35]. Pups
born to mothers under HFD are expected to demonstrate
elevated body weight compared to pups born to mothers
under the normal diet, indicating early metabolic alterations
[36]. GTT and ITT results may reveal impaired glucose
clearance and reduced insulin sensitivity, mirroring the
metabolic phenotype of their mothers. Maternal plasma
leptin levels are predicted to remain elevated post-partum,
suggesting persistent metabolic dysregulation beyond
pregnancy [16].These findings suggest that maternal
hyperleptinemia and leptin resistance during gestation can
disrupt neonatal energy homeostasis, predisposing offspring
to obesity and insulin resistance.

Histological Analysis
Pancreas

Histological examination of pancreatic sections is
expected to reveal significant beta-cell hypertrophy in HFD
mice compared to controls, indicating a compensatory
response to increased insulin demand under leptin-resistant
conditions [37]. Insulin immunostaining is expected to show
elevated expression in the experimental group, reflecting
heightened beta-cell activity [38]. However, chronic
hyperleptinemia may also lead to beta-cell dysfunction, and
some pancreatic islets may display irregular morphology,
including signs of degranulation [38].

Brain (Hypothalamus)

PSTAT-3 immunohistochemical (IHC) staining of the
hypothalamic sections are expected to demonstrate reduced
activation of leptin-responsive neurons in the arcuate
nucleus of HFD mice compared to controls [38]. The
suppression of leptin signaling in the HFD group would
support the development of hypothalamic leptin resistance.
Additionally, general disruptions in hypothalamic structures
may be observed, such as altered neuronal organization or
reduced density of leptin-sensitive regions [38]. These
structural and signaling changes could reflect impaired
central regulation of energy balance and appetite in
response to prolonged hyperleptinemia.

Liver

Liver sections stained with Oil Red O are expected to
exhibit greater lipid accumulation in the HFD group,
confirming hepatic steatosis [39]. Increased expression of
lipogenic and inflammatory markers is also expected to be
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observed, indicating early stages of liver dysfunction [39].
These findings suggest that chronic exposure to HFD and
elevated leptin levels disrupts hepatic metabolism and
contributes to systemic insulin resistance and inflammation,
consistent with the onset of metabolic syndrome.

Discussion

The expected findings from this study will provide
critical insights into leptin resistance during pregnancy and
its metabolic implications for maternal and offspring health.
We expect HFD to induce hyperleptinemia and leptin
resistance, contributing to metabolic dysfunction, excessive
gestational weight gain, and impaired glucose regulation.
These findings align with previous research, demonstrating
that leptin resistance is a key factor in metabolic disorder
development, particularly gestational diabetes mellitus
(GDM) [40].

Leptin Resistance and Metabolic Adaptations in Pregnancy
Expected results for maternal mice on HFD include

elevated plasma leptin levels and increased food intake,
indicating leptin resistance. Thus, leptin’s satiating effects
are suppressed, leading to increased caloric intake and
adipose accumulation. The increase in adiposity
exacerbates leptin release, further contributing to
hyperleptinemia and ultimately, leptin resistance. These
results align with existing literature, suggesting chronic
leptin elevation impairs hypothalamic signaling [41].

The expected impaired glucose tolerance observed in
HFD-fed mice supports the implications of leptin
resistance in metabolic dysregulation. Glucose tolerance
and insulin sensitivity tests that reveal higher blood
glucose levels and diminished insulin responses in HFD-
fed mice indicate a predisposition to insulin resistance
[33]. These findings are particularly relevant in the context
of human pregnancy, where leptin resistance has been
strongly linked to GDM [40]. With rising rates of maternal
obesity and GDM, understanding the underlying
mechanisms of leptin resistance is crucial for developing
targeted interventions [42].

Long-Term Health Implications for Maternal and Offspring
Health

Beyond pregnancy, persistent leptin resistance can have
significant long-term health consequences for mothers.
Consistently elevated leptin levels post-pregnancy suggests
prolonged metabolic dysregulation, increasing the risk of
chronic weight gain, obesity, and metabolic syndrome [11].
Epidemiological studies have reported a higher incidence of
type 2 diabetes and cardiovascular disease in women with a
history of GDM, reinforcing the importance of early
intervention strategies to mitigate disease [43].

This study also highlights transgenerational effects of
maternal hyperleptinemia and leptin resistance. Elevated
leptin levels during gestation may alter fetal metabolic
programming, predisposing offspring to obesity and
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metabolic disorders later in life. The study expects that the
offspring of HFD-fed mothers will exhibit higher birth
weights and altered metabolic profiles, consistent with
previous research linking maternal obesity to the DOHaD
hypothesis [14]. Early postnatal exposure to hyperleptinemia
may further exacerbate leptin resistance, creating a positive
feedback loop that promotes excessive weight gain and
metabolic dysfunction in offspring [26, 27]. Although this
study primarily focuses on maternal outcomes and basic
offspring metrics, histological examination of offspring
tissues can be reserved for future studies to further elucidate
the long-term effects of leptin resistance.

Limitations & Future Directions

While this study offers valuable insights into the role
of leptin resistance in pregnancy-related metabolic
outcomes, several limitations must be acknowledged.
Firstly, the reliance on a relatively small sample size (N =6
per group) may limit statistical power and generalizability,
particularly in detecting subtle inter-individual variations in
metabolic response.

Additionally, repeated tail vein bleeding for leptin and
glucose measurements introduces potential stress-related
confounders. Stress alters endocrine function, elevate
glucocorticoid levels, and adversely affect pregnancy
outcomes, including fetal development and gestational
length [44]. Handling stress may also affect food intake and
maternal behavior, influencing leptin secretion and
metabolic assessments. Another potential stressor is post-
copulation housing. Pregnant dams were singly housed to
monitor food intake and prevent aggression. Although
isolation can influence stress, prior studies report no
significant increase in corticosterone in singly housed adult
female C57BL/6 mice [21]. While all groups undergo the
same protocol, we expect their effects to be normalized.
Nonetheless, future studies could incorporate less invasive
blood sampling methods.

Furthermore, leptin resistance is mediated centrally
through impaired Ob-Rb receptor signaling and disrupted
JAK2/STAT3 pathway activation in the hypothalamus,
which blunts satiety signaling despite elevated leptin levels
[4]. Future work should measure hypothalamic Ob-Rb
expression and STAT3 phosphorylation to clarify the
molecular mechanisms underlying leptin resistance
observed in this model.

Finally, while the C57BL/6 mouse model is well-
characterized, interspecies differences remain.
Extrapolating findings to human pregnancy must be done
cautiously. Controlled environmental conditions and
genetic homogeneity in animal models do not fully
encapsulate the complexity of human maternal metabolism,
which is influenced by environmental and genetic factors.

Conclusions
This study proposes a comprehensive protocol to
investigate the role of leptin resistance in maternal obesity

Page 8 of 12


https://www.urncst.com/
https://doi.org/10.26685/urncst.903

UNDERGRADUATE RESEARCH IN NATURAL AND CLINICAL SCIENCE AND TECHNOLOGY (URNCST) JOURNAL
Read more URNCST Journal articles and submit your own today at: https:/www.urncst.com

using a well-characterized murine model. By inducing
hyperleptinemia through HFD and assessing metabolic,
hormonal, and developmental parameters across gestation
and the early postnatal period, this research aims to
elucidate the physiological consequences of disrupted leptin
signaling  during pregnancy. Through  metabolic
assessments,  histological analyses, and offspring
monitoring, the study will provide valuable insights into
how maternal leptin resistance contributes to gestational
disorders and intergenerational transmission of metabolic
dysfunction. Ultimately, these findings may inform future
strategies aimed at mitigating the effects of maternal
obesity and improving both maternal and offspring health
outcomes through targeted interventions in leptin signaling
pathways.
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